Architecture Pin Diagram

The Intel 8085A is a new generation, complete 8 bit parallel central processing unit (CPU). The 8085A uses a multiplexed data bus. The address is split between the 8bit address bus and the 8bit data bus.

Pin Description

The following Figure shows the pin diagram of the 8085 Microprocessor.

Pin Diagram

  • Single + 5V Supply
  • 4 Vectored Interrupts (One is Non Maskable)
  • Serial In/Serial Out Port
  • Decimal, Binary, and Double Precision Arithmetic
  • Direct Addressing Capability to 64K bytes of memory

The following describes the function of each pin:

A8 - 15 (Output 3 State)

Address Bus; The most significant 8 bits of the memory address or the 8 bits of the I/0 address,3 stated during Hold and Halt modes.

AD0 - 7 (Input/Output 3state)

Multiplexed Address/Data Bus; Lower 8 bits of the memory address (or I/0 address) appear on the bus during the first clock cycle of a machine state. It then becomes the data bus during the second and third clock cycles. 3 stated during Hold and Halt modes.

ALE (Output)

Address Latch Enable: It occurs during the first clock cycle of a machine state and enables the address to get latched into the on chip latch of peripherals. The falling edge of ALE is set to guarantee setup and hold times for the address information. ALE can also be used to strobe the status information. ALE is never 3stated.

SO, S1 (Output)

Data Bus Status. Encoded status of the bus cycle:

S1 S0
1 0 READ

S1 can be used as an advanced R/W status.

RD (Output 3state)

READ; indicates the selected memory or 1/0 device is to be read and that the Data Bus is available for the data transfer.

WR (Output 3state)

WRITE; indicates the data on the Data Bus is to be written into the selected memory or 1/0 location. Data is set up at the trailing edge of WR. 3stated during Hold and Halt modes.

READY (Input)

If Ready is high during a read or write cycle, it indicates that the memory or peripheral is ready to send or receive data. If Ready is low, the CPU will wait for Ready to go high before completing the read or write cycle.

HOLD (Input)

HOLD; indicates that another Master is requesting the use of the Address and Data Buses. The CPU, upon receiving the Hold request. will relinquish the use of buses as soon as the completion of the current machine cycle. Internal processing can continue. The processor can regain the buses only after the Hold is removed. When the Hold is acknowledged, the Address, Data, RD, WR, and IO/M lines are 3 stated.

HLDA (Output)

HOLD ACKNOWLEDGE; indicates that the CPU has received the Hold request and that it will relinquish the buses in the next clock cycle. HLDA goes low after the Hold request is removed. The CPU takes the buses one half clock cycle after HLDA goes low.

INTR (Input)

INTERRUPT REQUEST; is used as a general purpose interrupt. It is sampled only during the next to the last clock cycle of the instruction. If it is active, the Program Counter (PC) will be inhibited from incrementing and an INTA will be issued. During this cycle a RESTART or CALL instruction can be inserted to jump to the interrupt service routine. The INTR is enabled and disabled by software. It is disabled by Reset and immediately after an interrupt is accepted.

INTA (Output)

INTERRUPT ACKNOWLEDGE; is used instead of (and has the same timing as) RD during the Instruction cycle after an INTR is accepted. It can be used to activate the 8259 Interrupt chip or some other interrupt port.

RST 5.5 RST 6.5 - (Inputs) RST 7.5

RESTART INTERRUPTS; These three inputs have the same timing as I NTR except they cause an internal RESTART to be automatically inserted.

RST 7.5 ~~ Highest Priority
RST 6.5
RST 5.5 o Lowest Priority

The priority of these interrupts is ordered as shown above. These interrupts have a higher priority than the INTR.

TRAP (Input)

Trap interrupt is a nonmaskable restart interrupt. It is recognized at the same time as INTR. It is unaffected by any mask or Interrupt Enable. It has the highest priority of any interrupt.

RESET IN (Input)

Reset sets the Program Counter to zero and resets the Interrupt Enable and HLDA flipflops. None of the other flags or registers (except the instruction register) are affected The CPU is held in the reset condition as long as Reset is applied.

RESET OUT (Output)

Indicates CPlJ is being reset. Can be used as a system RESET. The signal is synchronized to the processor clock.

X1, X2 (Input)

Crystal or R/C network connections to set the internal clock generator X1 can also be an external clock input instead of a crystal. The input frequency is divided by 2 to give the internal operating frequency.

CLK (Output)

Clock Output for use as a system clock when a crystal or R/ C network is used as an input to the CPU. The period of CLK is twice the X1, X2 input period.

IO/M (Output)

IO/M indicates whether the Read/Write is to memory or l/O Tristated during Hold and Halt modes.

SID (Input)

Serial input data line The data on this line is loaded into accumulator bit 7 whenever a RIM instruction is executed.

SOD (output)

Serial output data line. The output SOD is set or reset as specified by the SIM instruction.


+5 volt supply.


Ground Reference.

Architecture of 8085 Processor

The following Figure shows the Internal Architecture of the 8085 Microprocessor.

8085 Processor Architecture

Control Unit

Generates signals within Micro Processor to carry out the instruction, which has been decoded. In reality causes certain connections between blocks of the Micro Processor to be opened or closed, so that data goes where it is required, and so that ALU operations occur.

Arithmetic Logic Unit

The ALU performs the actual numerical and logic operation such as 'add', 'subtract', 'AND', 'OR', etc. Uses data from memory and from Accumulator to perform arithmetic. Always stores result of operation in Accumulator.


The 8085/8080A-programming model includes six registers, one accumulator, and one flag register, as shown in Figure. In addition, it has two 16-bit registers: the stack pointer and the program counter. They are described briefly as follows.

The 8085/8080A has six general-purpose registers to store 8-bit data; these are identified as B,C,D,E,H, and L as shown in the figure. They can be combined as register pairs - BC, DE, and HL - to perform some 16-bit operations. The programmer can use these registers to store or copy data into the registers by using data copy instructions.


The accumulator is an 8-bit register that is a part of arithmetic/logic unit (ALU). This register is used to store 8-bit data and to perform arithmetic and logical operations. The result of an operation is stored in the accumulator. The accumulator is also identified as register A.


The ALU includes five flip-flops, which are set or reset after an operation according to data conditions of the result in the accumulator and other registers. They are called Zero(Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags; they are listed in the Table and their bit positions in the flag register are shown in the Figure below. The most commonly used flags are Zero, Carry, and Sign. The microprocessor uses these flags to test data conditions.

For example, after an addition of two numbers, if the sum in the accumulator id larger than eight bits, the flip-flop uses to indicate a carry -- called the Carry flag (CY) -- is set to one. When an arithmetic operation results in zero, the flip-flop called the Zero(Z) flag is set to one. The first Figure shows an 8-bit register, called the flag register, adjacent to the accumulator.

However, it is not used as a register; five bit positions out of eight are used to store the outputs of the five flip-flops. The flags are stored in the 8-bit register so that the programmer can examine these flags (data conditions) by accessing the register through an instruction.

These flags have critical importance in the decision-making process of the microprocessor. The conditions (set or reset) of the flags are tested through the software instructions.

For example, the instruction JC (Jump on Carry) is implemented to change the sequence of a program when CY flag is set. The thorough understanding of flag is essential in writing assembly language programs.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This register is a memory pointer. Memory locations have 16-bit addresses, and that is why this is a 16-bit register.

The microprocessor uses this register to sequence the execution of the instructions. The function of the program counter is to point to the memory address from which the next byte is to be fetched. When a byte (machine code) is being fetched, the program counter is incremented by one to point to the next memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register used as a memory pointer. It points to a memory location in R/W memory, called the stack. The beginning of the stack is defined by loading 16-bit address in the stack pointer. The stack concept is explained in the chapter "Stack and Subroutines."

Instruction Register/Decoder

Temporary store for the current instruction of a program. Latest instruction sent here from memory prior to execution. Decoder then takes instruction and 'decodes' or interprets the instruction. Decoded instruction then passed to next stage.

Memory Address Register

Holds address, received from PC, of next program instruction. Feeds the address bus with addresses of location of the program under execution.

Control Generator

Generates signals within Micro Processor to carry out the instruction which has been decoded. In reality causes certain connections between blocks of the Micro Processor to be opened or closed, so that data goes where it is required, and so that ALU operations occur.

Register Selector

This block controls the use of the register stack in the example. Just a logic circuit which switches between different registers in the set will receive instructions from Control Unit.

General Purpose Registers

Micro Processor requires extra registers for versatility. Can be used to store additional data during a program. More complex processors may have a variety of differently named registers.


How does the Micro Processor knows what an instruction means, especially when it is only a binary number? The microprogram in a Micro Processor/Micro Controller is written by the chip designer and tells the Micro Processor/Micro Controller the meaning of each instruction Micro Processor/Micro Controller can then carry out operation.

Instructions can be categorized according to their method of addressing the hardware registers and/or memory.

User Comments

No Posts found !

Login to Post a Comment.